Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Med Chem ; 65(4): 2809-2819, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-2285958

ABSTRACT

Hexameric structure formation through packing of three C-terminal helices and an N-terminal trimeric coiled-coil core has been proposed as a general mechanism of class I enveloped virus entry. In this process, the C-terminal helical repeat (HR2) region of viral membrane fusion proteins becomes transiently exposed and accessible to N-terminal helical repeat (HR1) trimer-based fusion inhibitors. Herein, we describe a mimetic of the HIV-1 gp41 HR1 trimer, N3G, as a promising therapeutic against HIV-1 infection. Surprisingly, we found that in addition to protection against HIV-1 infection, N3G was also highly effective in inhibiting infection of human ß-coronaviruses, including MERS-CoV, HCoV-OC43, and SARS-CoV-2, possibly by binding the HR2 region in the spike protein of ß-coronaviruses to block their hexameric structure formation. These studies demonstrate the potential utility of anti-HIV-1 HR1 peptides in inhibiting human ß-coronavirus infection. Moreover, this strategy could be extended to the design of broad-spectrum antivirals based on the supercoiling structure of peptides.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Drug Design , HIV Envelope Protein gp41/antagonists & inhibitors , HIV-1/drug effects , Peptides/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line , Coronavirus Infections/metabolism , Dose-Response Relationship, Drug , HIV Envelope Protein gp41/metabolism , HIV-1/metabolism , Humans , Microbial Sensitivity Tests , Peptides/chemical synthesis , Peptides/chemistry , Structure-Activity Relationship
2.
N Engl J Med ; 386(19): 1793-1803, 2022 05 12.
Article in English | MEDLINE | ID: covidwho-1895621

ABSTRACT

BACKGROUND: Patients with multidrug-resistant human immunodeficiency virus type 1 (HIV-1) infection have limited treatment options. Lenacapavir is a first-in-class capsid inhibitor that showed substantial antiviral activity in a phase 1b study. METHODS: In this phase 3 trial, we enrolled patients with multidrug-resistant HIV-1 infection in two cohorts, according to the change in the plasma HIV-1 RNA level between the screening and cohort-selection visits. In cohort 1, patients were first randomly assigned in a 2:1 ratio to receive oral lenacapavir or placebo in addition to their failing therapy for 14 days; during the maintenance period, starting on day 15, patients in the lenacapavir group received subcutaneous lenacapavir once every 6 months, and those in the placebo group received oral lenacapavir, followed by subcutaneous lenacapavir; both groups also received optimized background therapy. In cohort 2, all the patients received open-label oral lenacapavir with optimized background therapy on days 1 through 14; subcutaneous lenacapavir was then administered once every 6 months starting on day 15. The primary end point was the percentage of patients in cohort 1 who had a decrease of at least 0.5 log10 copies per milliliter in the viral load by day 15; a key secondary end point was a viral load of less than 50 copies per milliliter at week 26. RESULTS: A total of 72 patients were enrolled, with 36 in each cohort. In cohort 1, a decrease of at least 0.5 log10 copies per milliliter in the viral load by day 15 was observed in 21 of 24 patients (88%) in the lenacapavir group and in 2 of 12 patients (17%) in the placebo group (absolute difference, 71 percentage points; 95% confidence interval, 35 to 90). At week 26, a viral load of less than 50 copies per milliliter was reported in 81% of the patients in cohort 1 and in 83% in cohort 2, with a least-squares mean increase in the CD4+ count of 75 and 104 cells per cubic millimeter, respectively. No serious adverse events related to lenacapavir were identified. In both cohorts, lenacapavir-related capsid substitutions that were associated with decreased susceptibility developed in 8 patients during the maintenance period (6 with M66I substitutions). CONCLUSIONS: In patients with multidrug-resistant HIV-1 infection, those who received lenacapavir had a greater reduction from baseline in viral load than those who received placebo. (Funded by Gilead Sciences; CAPELLA ClinicalTrials.gov number, NCT04150068.).


Subject(s)
Anti-HIV Agents , Drug Resistance, Multiple, Viral , HIV Infections , HIV-1 , Anti-HIV Agents/therapeutic use , CD4 Lymphocyte Count , Capsid , Drug Therapy, Combination , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/drug effects , HIV-1/genetics , Humans , RNA, Viral , Viral Load
3.
Nature ; 606(7913): 375-381, 2022 06.
Article in English | MEDLINE | ID: covidwho-1890198

ABSTRACT

Antiretroviral therapy is highly effective in suppressing human immunodeficiency virus (HIV)1. However, eradication of the virus in individuals with HIV has not been possible to date2. Given that HIV suppression requires life-long antiretroviral therapy, predominantly on a daily basis, there is a need to develop clinically effective alternatives that use long-acting antiviral agents to inhibit viral replication3. Here we report the results of a two-component clinical trial involving the passive transfer of two HIV-specific broadly neutralizing monoclonal antibodies, 3BNC117 and 10-1074. The first component was a randomized, double-blind, placebo-controlled trial that enrolled participants who initiated antiretroviral therapy during the acute/early phase of HIV infection. The second component was an open-label single-arm trial that enrolled individuals with viraemic control who were naive to antiretroviral therapy. Up to 8 infusions of 3BNC117 and 10-1074, administered over a period of 24 weeks, were well tolerated without any serious adverse events related to the infusions. Compared with the placebo, the combination broadly neutralizing monoclonal antibodies maintained complete suppression of plasma viraemia (for up to 43 weeks) after analytical treatment interruption, provided that no antibody-resistant HIV was detected at the baseline in the study participants. Similarly, potent HIV suppression was seen in the antiretroviral-therapy-naive study participants with viraemia carrying sensitive virus at the baseline. Our data demonstrate that combination therapy with broadly neutralizing monoclonal antibodies can provide long-term virological suppression without antiretroviral therapy in individuals with HIV, and our experience offers guidance for future clinical trials involving next-generation antibodies with long half-lives.


Subject(s)
Anti-HIV Agents , Antibodies, Neutralizing , HIV Antibodies , HIV Infections , HIV-1 , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/adverse effects , Anti-HIV Agents/immunology , Anti-HIV Agents/therapeutic use , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/adverse effects , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Broadly Neutralizing Antibodies/administration & dosage , Broadly Neutralizing Antibodies/adverse effects , Broadly Neutralizing Antibodies/immunology , Broadly Neutralizing Antibodies/therapeutic use , Double-Blind Method , HIV Antibodies/administration & dosage , HIV Antibodies/adverse effects , HIV Antibodies/immunology , HIV Antibodies/therapeutic use , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , HIV-1/immunology , HIV-1/isolation & purification , Humans , Viral Load/drug effects , Viremia/drug therapy , Viremia/immunology , Viremia/virology
4.
J Inorg Biochem ; 234: 111880, 2022 09.
Article in English | MEDLINE | ID: covidwho-1882224

ABSTRACT

Inhibitors of type 1 human immunodeficiency virus (HIV-1) reverse transcriptase are central to anti-HIV therapy. Most of their targets are enzymes, while very few could bind to viral RNA. Here we designed four new polypyridyl Ru(II) complexes, which could bind HIV-1 TAR RNA tightly and selectively by molecular recognition of hydrogen bonds, further stabilize the Ru(II)-RNA bound system by electrostatic attraction, and efficiently inhibit the Moloney murine leukemia virus (M-MuLV) and HIV-1 reverse transcriptase. The polypyridyl Ru(II) complexes also have physical and chemical advantages, including high chemical stability and photostability, sensitive spectroscopic responses to HIV TAR RNA, and low toxicity to normal cells. This work also provides valuable drug design strategies for acquired immune deficiency syndrome (AIDS) and other reverse transcriptase related disease research, such as hepatitis C virus (HCV), Ebola virus (EBOV), influenza A virus, and most recently the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Subject(s)
HIV-1 , Reverse Transcriptase Inhibitors , Ruthenium , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , Humans , RNA , Reverse Transcriptase Inhibitors/pharmacology , Ruthenium/chemistry , Ruthenium/pharmacology , SARS-CoV-2
5.
Molecules ; 27(5)2022 Feb 24.
Article in English | MEDLINE | ID: covidwho-1780062

ABSTRACT

Diseases caused by viruses are a global threat, resulting in serious medical and social problems for humanity. They are the main contributors to many minor and major outbreaks, epidemics, and pandemics worldwide. Over the years, medicinal plants have been used as a complementary treatment in a range of diseases. In this sense, this review addresses promising antiviral plants from Marajó island, a part of the Amazon region, which is known to present a very wide biodiversity of medicinal plants. The present review has been limited to articles and abstracts available in Scopus, Web of Science, Science Direct, Scielo, PubMed, and Google Scholar, as well as the patent offices in Brazil (INPI), United States (USPTO), Europe (EPO) and World Intellectual Property Organization (WIPO). As a result, some plants from Marajó island were reported to have actions against HIV-1,2, HSV-1,2, SARS-CoV-2, HAV and HBV, Poliovirus, and influenza. Our major conclusion is that plants of the Marajó region show promising perspectives regarding pharmacological potential in combatting future viral diseases.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Brazil , COVID-19/virology , HIV-1/drug effects , Hepatitis A virus/drug effects , Herpesvirus 1, Human/drug effects , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plants, Medicinal/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification
6.
Molecules ; 27(1)2022 Jan 04.
Article in English | MEDLINE | ID: covidwho-1613911

ABSTRACT

When developing drugs against SARS-CoV-2, it is important to consider the characteristics of patients with different co-morbidities. People infected with HIV-1 are a particularly vulnerable group, as they may be at a higher risk than the general population of contracting COVID-19 with clinical complications. For such patients, drugs with a broad spectrum of antiviral activity are of paramount importance. Glycyrrhizinic acid (Glyc) and its derivatives are promising biologically active compounds for the development of such broad-spectrum antiviral agents. In this work, derivatives of Glyc obtained by acylation with nicotinic acid were investigated. The resulting preparation, Glycyvir, is a multi-component mixture containing mainly mono-, di-, tri- and tetranicotinates. The composition of Glycyvir was characterized by HPLC-MS/MS and its toxicity assessed in cell culture. Antiviral activity against three strains of SARS-CoV-2 was tested in vitro on Vero E6 cells by MTT assay. Glycyvir was shown to inhibit SARS-CoV-2 replication in vitro (IC502-8 µM) with an antiviral activity comparable to the control drug Remdesivir. In addition, Glycyvir exhibited marked inhibitory activity against HIV pseudoviruses of subtypes B, A6 and the recombinant form CRF63_02A (IC50 range 3.9-27.5 µM). The time-dependence of Glycyvir inhibitory activity on HIV pseudovirus infection of TZM-bl cells suggested that the compound interfered with virus entry into the target cell. Glycyvir is a promising candidate as an agent with low toxicity and a broad spectrum of antiviral action.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Glycyrrhizic Acid/chemistry , HIV Infections/drug therapy , HIV-1/drug effects , SARS-CoV-2/drug effects , Virus Replication , Animals , Antiviral Agents/chemical synthesis , COVID-19/virology , Chlorocebus aethiops , HIV Infections/virology , HeLa Cells , Humans , In Vitro Techniques , Vero Cells
7.
Viruses ; 14(1)2021 12 30.
Article in English | MEDLINE | ID: covidwho-1580401

ABSTRACT

Medicinal chemistry optimization of a previously described stilbene inhibitor of HIV-1, 5350150 (2-(2-(5-nitro-2-thienyl)vinyl)quinoline), led to the identification of the thiazole-5-carboxamide derivative (GPS491), which retained potent anti-HIV-1 activity with reduced toxicity. In this report, we demonstrate that the block of HIV-1 replication by GPS491 is accompanied by a drastic inhibition of viral gene expression (IC50 ~ 0.25 µM), and alterations in the production of unspliced, singly spliced, and multiply spliced HIV-1 RNAs. GPS491 also inhibited the replication of adenovirus and multiple coronaviruses. Low µM doses of GPS491 reduced adenovirus infectious yield ~1000 fold, altered virus early gene expression/viral E1A RNA processing, blocked viral DNA amplification, and inhibited late (hexon) gene expression. Loss of replication of multiple coronaviruses (229E, OC43, SARS-CoV2) upon GPS491 addition was associated with the inhibition of viral structural protein expression and the formation of virus particles. Consistent with the observed changes in viral RNA processing, GPS491 treatment induced selective alterations in the accumulation/phosphorylation/function of splicing regulatory SR proteins. Our study establishes that a compound that impacts the activity of cellular factors involved in RNA processing can prevent the replication of several viruses with minimal effect on cell viability.


Subject(s)
Adenoviridae/drug effects , Antiviral Agents/pharmacology , Coronavirus/drug effects , HIV-1/drug effects , RNA Processing, Post-Transcriptional/drug effects , Thiazoles/pharmacology , Virus Replication/drug effects , Adenoviridae/physiology , Antiviral Agents/chemistry , Cell Line , Coronavirus/classification , Coronavirus/physiology , Gene Expression/drug effects , HIV-1/physiology , Humans , RNA Splicing Factors/metabolism , RNA, Viral/metabolism , Thiazoles/chemistry
8.
Viruses ; 13(10)2021 10 02.
Article in English | MEDLINE | ID: covidwho-1441885

ABSTRACT

Viral proteases are indispensable for successful virion maturation, thus making them a prominent drug target. Their enzyme activity is tightly spatiotemporally regulated by expression in the precursor form with little or no activity, followed by activation via autoprocessing. These cleavage events are frequently triggered upon transportation to a specific compartment inside the host cell. Typically, precursor oligomerization or the presence of a co-factor is needed for activation. A detailed understanding of these mechanisms will allow ligands with non-canonical mechanisms of action to be designed, which would specifically modulate the initial irreversible steps of viral protease autoactivation. Binding sites exclusive to the precursor, including binding sites beyond the protease domain, can be exploited. Both inhibition and up-regulation of the proteolytic activity of viral proteases can be detrimental for the virus. All these possibilities are discussed using examples of medically relevant viruses including herpesviruses, adenoviruses, retroviruses, picornaviruses, caliciviruses, togaviruses, flaviviruses, and coronaviruses.


Subject(s)
Antiviral Agents/pharmacology , Viral Protease Inhibitors/pharmacology , Viral Proteases/metabolism , Virus Diseases/drug therapy , Adenoviruses, Human/drug effects , Adenoviruses, Human/metabolism , Flavivirus/drug effects , Flavivirus/metabolism , HIV-1/drug effects , Herpesviridae/drug effects , Herpesviridae/metabolism , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Viral Proteases/biosynthesis
9.
Biomed Res Int ; 2021: 9998420, 2021.
Article in English | MEDLINE | ID: covidwho-1398744

ABSTRACT

The global burden of viral infection, especially the current pandemics of SARS-CoV-2, HIV/AIDS, and hepatitis, is a very risky one. Additionally, HCV expresses the necessity for antiviral therapeutic elements. Venoms are known to contain an array of bioactive peptides that are commonly used in the treatment of various medical issues. Several peptides isolated from scorpion venom have recently been proven to possess an antiviral activity against several viral families. The aim of this review is to provide an up-to-date overview of scorpion antiviral peptides and to discuss their modes of action and potential biomedical application against different viruses.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Peptides/pharmacology , Scorpion Venoms/chemistry , Virus Diseases/drug therapy , Animals , Coronavirus/drug effects , HIV-1/drug effects , Hepatitis Viruses/drug effects , Herpesvirus 1, Human/drug effects , Humans , Measles virus/drug effects , Peptides/chemistry , Peptides/isolation & purification , Virus Diseases/virology
10.
Molecules ; 25(12)2020 Jun 26.
Article in English | MEDLINE | ID: covidwho-1389454

ABSTRACT

Viruses can be spread from one person to another; therefore, they may cause disorders in many people, sometimes leading to epidemics and even pandemics. New, previously unstudied viruses and some specific mutant or recombinant variants of known viruses constantly appear. An example is a variant of coronaviruses (CoV) causing severe acute respiratory syndrome (SARS), named SARS-CoV-2. Some antiviral drugs, such as remdesivir as well as antiretroviral drugs including darunavir, lopinavir, and ritonavir are suggested to be effective in treating disorders caused by SARS-CoV-2. There are data on the utilization of antiretroviral drugs against SARS-CoV-2. Since there are many studies aimed at the identification of the molecular mechanisms of human immunodeficiency virus type 1 (HIV-1) infection and the development of novel therapeutic approaches against HIV-1, we used HIV-1 for our case study to identify possible molecular pathways shared by SARS-CoV-2 and HIV-1. We applied a text and data mining workflow and identified a list of 46 targets, which can be essential for the development of infections caused by SARS-CoV-2 and HIV-1. We show that SARS-CoV-2 and HIV-1 share some molecular pathways involved in inflammation, immune response, cell cycle regulation.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/metabolism , Data Mining/methods , HIV Infections/epidemiology , HIV Infections/metabolism , Host-Pathogen Interactions/immunology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/metabolism , Anti-Inflammatory Agents/therapeutic use , Antigens, Differentiation/genetics , Antigens, Differentiation/immunology , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Complement System Proteins/genetics , Complement System Proteins/immunology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Databases, Genetic , Gene Expression Regulation , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1/drug effects , HIV-1/immunology , HIV-1/pathogenicity , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Immunity, Innate/drug effects , Immunologic Factors/therapeutic use , Inflammation , Interferons/genetics , Interferons/immunology , Interleukins/genetics , Interleukins/immunology , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/immunology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Repressor Proteins/genetics , Repressor Proteins/immunology , SARS-CoV-2 , Signal Transduction , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/immunology
11.
Acc Chem Res ; 54(17): 3349-3361, 2021 09 07.
Article in English | MEDLINE | ID: covidwho-1360179

ABSTRACT

Treatment of HIV-1 has largely involved targeting viral enzymes using a cocktail of inhibitors. However, resistance to these inhibitors and toxicity in the long term have pushed the field to identify new therapeutic targets. To that end, -1 programmed ribosomal frameshifting (-1 PRF) has gained attention as a potential node for therapeutic intervention. In this process, a ribosome moves one nucleotide backward in the course of translating a mRNA, revealing a new reading frame for protein synthesis. In HIV-1, -1 PRF allows the virus to regulate the ratios of enzymatic and structural proteins as needed for correct viral particle assembly. Two RNA structural elements are central to -1 PRF in HIV: a slippery sequence and a highly conserved stable hairpin called the HIV-1 frameshifting stimulatory signal (FSS). Dysregulation of -1 PRF is deleterious for the virus. Thus, -1 PRF is an attractive target for new antiviral development. It is important to note that HIV-1 is not the only virus exploiting -1 PRF for regulating production of its proteins. Coronaviruses, including the COVID-19 pandemic virus SARS-CoV-2, also rely on -1 PRF. In SARS-CoV-2 and other coronaviruses, -1 PRF is required for synthesis of RNA-dependent RNA polymerase and several other nonstructural proteins. Coronaviruses employ a more complex RNA structural element for regulating -1 PRF called a pseudoknot. The purpose of this Account is primarily to review the development of molecules targeting HIV-1 -1 PRF. These approaches are case studies illustrating how the entire pipeline from screening to the generation of high-affinity leads might be implemented. We consider both target-based and function-based screening, with a particular focus on our group's approach beginning with a resin-bound dynamic combinatorial library (RBDCL) screen. We then used rational design approaches to optimize binding affinity, selectivity, and cellular bioavailability. Our tactic is, to the best of our knowledge, the only study resulting in compounds that bind specifically to the HIV-1 FSS RNA and reduce infectivity of laboratory and drug-resistant strains of HIV-1 in human cells. Lessons learned from strategies targeting -1 PRF HIV-1 might provide solutions in the development of antivirals in areas of unmet medical need. This includes the development of new frameshift-altering therapies for SARS-CoV-2, approaches to which are very recently beginning to appear.


Subject(s)
Antiviral Agents/pharmacology , HIV-1/drug effects , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Combinatorial Chemistry Techniques , Frameshifting, Ribosomal/drug effects , Humans , Microbial Sensitivity Tests
13.
Dalton Trans ; 49(39): 13538-13543, 2020 Oct 12.
Article in English | MEDLINE | ID: covidwho-1305373

ABSTRACT

Lectins, which exhibit viral-interaction abilities, have garnered attention in the current pandemic era as potential neutralizing agents and vaccine candidates. Viral invasion through envelope proteins is modulated by N-linked glycosylation in the spike (S) protein. This study demonstrates the biophysical aspects between lectins and high-mannose and -galactose N-glycans to provide insights into binding events.


Subject(s)
Antiviral Agents/pharmacology , Concanavalin A/pharmacology , Polysaccharides/metabolism , Viral Envelope Proteins/metabolism , Coronavirus/drug effects , Coronavirus/physiology , Coronavirus Infections/drug therapy , HIV Infections/drug therapy , HIV-1/drug effects , HIV-1/physiology , Host-Pathogen Interactions/drug effects , Humans , Mannose/metabolism , Spike Glycoprotein, Coronavirus/metabolism
14.
Emerg Microbes Infect ; 10(1): 810-821, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1180458

ABSTRACT

EK1 peptide is a membrane fusion inhibitor with broad-spectrum activity against human coronaviruses (CoVs). In the outbreak of COVID-19, we generated a lipopeptide EK1V1 by modifying EK1 with cholesterol, which exhibited significantly improved antiviral activity. In this study, we surprisingly found that EK1V1 also displayed potent cross-inhibitory activities against divergent HIV-1, HIV-2, and simian immunodeficiency virus (SIV) isolates. Consistently, the recently reported EK1 derivative EK1C4 and SARS-CoV-2 derived fusion inhibitor lipopeptides (IPB02 ∼ IPB09) also inhibited HIV-1 Env-mediated cell-cell fusion and infection efficiently. In the inhibition of a panel of HIV-1 mutants resistant to HIV-1 fusion inhibitors, EK1V1 and IPB02-based inhibitors exhibited significantly decreased or increased activities, suggesting the heptad repeat-1 region (HR1) of HIV-1 gp41 being their target. Furthermore, the sequence alignment and molecular docking analyses verified the target site and revealed the mechanism underlying the resistance. Combined, we conclude that this serendipitous discovery provides a proof-of-concept for a common mechanism of viral fusion and critical information for the development of broad-spectrum antivirals.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , HIV-1/drug effects , HIV-2/drug effects , Simian Immunodeficiency Virus/drug effects , Virus Internalization/drug effects , Amino Acid Sequence , Animals , Antiviral Agents/isolation & purification , Dose-Response Relationship, Drug , HIV Fusion Inhibitors/isolation & purification , HIV Fusion Inhibitors/pharmacology , Humans , Lipopeptides/isolation & purification , Lipopeptides/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Fragments/isolation & purification , Peptide Fragments/pharmacology , SARS-CoV-2/drug effects , Structure-Activity Relationship , Virus Replication/drug effects
15.
Molecules ; 26(5)2021 Mar 09.
Article in English | MEDLINE | ID: covidwho-1143539

ABSTRACT

A series of hitherto unknown (1,4-disubstituted-1,2,3-triazol)-(E)-2-methyl-but-2-enyl nucleosides phosphonate prodrugs bearing 4-substituted-1,2,3-triazoles were prepared in a straight approach through an olefin acyclic cross metathesis as the key synthetic step. All novel compounds were evaluated for their antiviral activities against HBV, HIV and SARS-CoV-2. Among these molecules, only compound 15j, a hexadecyloxypropyl (HDP)/(isopropyloxycarbonyl-oxymethyl)-ester (POC) prodrug, showed activity against HBV in Huh7 cell cultures with 62% inhibition at 10 µM, without significant cytotoxicity (IC50 = 66.4 µM in HepG2 cells, IC50 = 43.1 µM in HepG2 cells) at 10 µM.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Azo Compounds/chemistry , Nucleosides/chemistry , Organophosphonates/chemistry , Prodrugs/chemical synthesis , Prodrugs/pharmacology , Alkenes/chemistry , Animals , Cell Line, Tumor , Chlorocebus aethiops , HIV-1/drug effects , Hepatitis B virus/drug effects , Humans , Magnetic Resonance Spectroscopy , Methylation , SARS-CoV-2/drug effects , Structure-Activity Relationship , Triazoles/chemistry , Vero Cells
16.
Artif Cells Nanomed Biotechnol ; 49(1): 204-218, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1109121

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a zoo tonic, highly pathogenic virus. The new type of coronavirus with contagious nature spread from Wuhan (China) to the whole world in a very short time and caused the new coronavirus disease (COVID-19). COVID-19 has turned into a global public health crisis due to spreading by close person-to-person contact with high transmission capacity. Thus, research about the treatment of the damages caused by the virus or prevention from infection increases everyday. Besides, there is still no approved and definitive, standardized treatment for COVID-19. However, this disaster experienced by human beings has made us realize the significance of having a system ready for use to prevent humanity from viral attacks without wasting time. As is known, nanocarriers can be targeted to the desired cells in vitro and in vivo. The nano-carrier system targeting a specific protein, containing the enzyme inhibiting the action of the virus can be developed. The system can be used by simple modifications when we encounter another virus epidemic in the future. In this review, we present a potential treatment method consisting of a nanoparticle-ribozyme conjugate, targeting ACE-2 receptors by reviewing the virus-associated ribozymes, their structures, types and working mechanisms.


Subject(s)
COVID-19 Drug Treatment , Nanoparticles/administration & dosage , RNA, Catalytic/therapeutic use , RNA, Viral/antagonists & inhibitors , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Clinical Trials as Topic , Drug Carriers , Drug Compounding , Drug Design , HIV Infections/drug therapy , HIV-1/drug effects , HIV-1/genetics , Humans , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/genetics , Models, Molecular , Nucleic Acid Conformation , RNA Interference , RNA, Catalytic/administration & dosage , RNA, Catalytic/chemistry , RNA, Catalytic/classification , RNA, Untranslated/classification , RNA, Untranslated/genetics , RNA, Untranslated/therapeutic use , Receptors, Coronavirus/antagonists & inhibitors , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/physiology , Virus Replication/drug effects
17.
Infect Control Hosp Epidemiol ; 42(3): 253-260, 2021 03.
Article in English | MEDLINE | ID: covidwho-1009986

ABSTRACT

BACKGROUND: Personal protective equipment (PPE) is a critical need during the coronavirus disease 2019 (COVID-19) pandemic. Alternative sources of surgical masks, including 3-dimensionally (3D) printed approaches that may be reused, are urgently needed to prevent PPE shortages. Few data exist identifying decontamination strategies to inactivate viral pathogens and retain 3D-printing material integrity. OBJECTIVE: To test viral disinfection methods on 3D-printing materials. METHODS: The viricidal activity of common disinfectants (10% bleach, quaternary ammonium sanitizer, 3% hydrogen peroxide, or 70% isopropanol and exposure to heat (50°C, and 70°C) were tested on four 3D-printed materials used in the healthcare setting, including a surgical mask design developed by the Veterans' Health Administration. Inactivation was assessed for several clinically relevant RNA and DNA pathogenic viruses, including severe acute respiratory coronavirus virus 2 (SARS-CoV-2) and human immunodeficiency virus 1 (HIV-1). RESULTS: SARS-CoV-2 and all viruses tested were completely inactivated by a single application of bleach, ammonium quaternary compounds, or hydrogen peroxide. Similarly, exposure to dry heat (70°C) for 30 minutes completely inactivated all viruses tested. In contrast, 70% isopropanol reduced viral titers significantly less well following a single application. Inactivation did not interfere with material integrity of the 3D-printed materials. CONCLUSIONS: Several standard decontamination approaches effectively disinfected 3D-printed materials. These approaches were effective in the inactivation SARS-CoV-2, its surrogates, and other clinically relevant viral pathogens. The decontamination of 3D-printed surgical mask materials may be useful during crisis situations in which surgical mask supplies are limited.


Subject(s)
COVID-19/prevention & control , Disinfectants/pharmacology , Disinfection/methods , Masks , SARS-CoV-2/drug effects , Virus Inactivation , 2-Propanol , DNA, Viral/drug effects , Decontamination/methods , HIV-1/drug effects , Healthy Volunteers , Hot Temperature , Humans , Hydrogen Peroxide , Personal Protective Equipment , Printing, Three-Dimensional , RNA, Viral/drug effects , Virus Diseases/prevention & control
18.
Viruses ; 13(1)2020 12 30.
Article in English | MEDLINE | ID: covidwho-1004763

ABSTRACT

P-selectin glycoprotein ligand-1 (PSGL-1) is a cell surface glycoprotein that binds to P-, E-, and L-selectins to mediate the tethering and rolling of immune cells on the surface of the endothelium for cell migration into inflamed tissues. PSGL-1 has been identified as an interferon-γ (INF-γ)-regulated factor that restricts HIV-1 infectivity, and has recently been found to possess broad-spectrum antiviral activities. Here we report that the expression of PSGL-1 in virus-producing cells impairs the incorporation of SARS-CoV and SARS-CoV-2 spike (S) glycoproteins into pseudovirions and blocks pseudovirus attachment and infection of target cells. These findings suggest that PSGL-1 may potentially inhibit coronavirus replication in PSGL-1+ cells.


Subject(s)
COVID-19/virology , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/metabolism , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/drug effects , Virion , Animals , Cell Line , HEK293 Cells , HIV-1/drug effects , Humans , Interferon-gamma , Virus Attachment/drug effects , Virus Internalization/drug effects
20.
Sci Rep ; 10(1): 20397, 2020 11 23.
Article in English | MEDLINE | ID: covidwho-940864

ABSTRACT

COVID-19 caused by the SARS-CoV-2 is a current global challenge and urgent discovery of potential drugs to combat this pandemic is a need of the hour. 3-chymotrypsin-like cysteine protease (3CLpro) enzyme is the vital molecular target against the SARS-CoV-2. Therefore, in the present study, 1528 anti-HIV1compounds were screened by sequence alignment between 3CLpro of SARS-CoV-2 and avian infectious bronchitis virus (avian coronavirus) followed by machine learning predictive model, drug-likeness screening and molecular docking, which resulted in 41 screened compounds. These 41 compounds were re-screened by deep learning model constructed considering the IC50 values of known inhibitors which resulted in 22 hit compounds. Further, screening was done by structural activity relationship mapping which resulted in two structural clefts. Thereafter, functional group analysis was also done, where cluster 2 showed the presence of several essential functional groups having pharmacological importance. In the final stage, Cluster 2 compounds were re-docked with four different PDB structures of 3CLpro, and their depth interaction profile was analyzed followed by molecular dynamics simulation at 100 ns. Conclusively, 2 out of 1528 compounds were screened as potential hits against 3CLpro which could be further treated as an excellent drug against SARS-CoV-2.


Subject(s)
Anti-HIV Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Cheminformatics/methods , Deep Learning , Drug Repositioning/methods , HIV-1/drug effects , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Evaluation, Preclinical/methods , Humans , Infectious bronchitis virus/drug effects , Molecular Docking Simulation , SARS-CoV-2/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL